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Posttraumatic stress disorder (PTSD) is an anxiety dis-
order that can develop after a traumatic experience such
as domestic violence, natural disasters or combat-relat-
ed trauma. The cost of such disorders on society and the
individual can be tremendous. In this article, we review
how the neural circuitry implicated in PTSD in humans is
related to the neural circuitry of fear. We then discuss
how fear conditioning is a suitable model for studying
the molecular mechanisms of the fear components that
underlie PTSD, and the biology of fear conditioning with
a particular focus on the brain-derived neurotrophic
factor (BDNF)-tyrosine kinase B (TrkB), GABAergic and
glutamatergic ligand-receptor systems. We then sum-
marize how such approaches might help to inform our
understanding of PTSD and other stress-related disor-
ders and provide insight to new pharmacological ave-
nues of treatment of PTSD.

Introduction
Irrational fear is a major impediment to success and
productivity. In 1933, when Franklin D. Roosevelt ac-
knowledged ‘the only thing we have to fear is fear itself,
he was commenting on the economic future of the USA, but
unreasonable over-generalized fear can have dramatic
effects on all aspects of one’s life. Over-generalized fear
is one of the biggest symptoms of anxiety disorders, in
particular disorders of fear regulation, including phobia,
panic disorder and posttraumatic stress disorder (PTSD).
PTSD is an example of how excessive fear can impair
quality of life. Although fear learning is an evolutionarily
advantageous response mechanism, when fear becomes too
generalized, this mechanism might not only be unproduc-
tive but harmful. PTSD is a disorder where learned fear
due to a traumatic event becomes generalized to situations
that would normally be considered safe and results in
autonomic hyperarousal in inappropriate situations.
Three types of symptoms are prevalent in PTSD: reex-
periencing, avoidance and hyperarousal. Reexperiencing
symptoms involve flashbacks, nightmares and frightening
thoughts about the trauma, which can result in physical
symptoms including headaches, pains and other symptoms
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of somatization. Avoidance symptoms include avoiding Jyomm®~

reminders of the experience, feeling emotionally numb, {ﬁg"g‘xdpif;‘e"nfce

losing interest in previously enjoyable activities and def- feeling
emotionally

icits in learning and memory. These symptoms might numb, losing

cause a person to change his or her personal routine. previously

Finally, hyperarousal symptoms include being easily star- aciviies,

tled, feeling tense, having difficulty sleeping and/or having learning &

angry outbursts. Reminders of the traumatic event usually ™"

trigger reexperiencing and avoidance symptoms whereas hyperarousal

hyperarousal symptoms might be present more continu- :aseillgr/]gtartled,

ously [1-6]. L?Jlﬂg Eﬁf?i?:edlty
There is variability in the prevalence and severity of smngenary

PTSD [3]. Trauma is necessary but not sufficient for the °/Us'

precipitation of PTSD. In fact one of the most critical

current questions is why some trauma victims develop

PTSD (between 5 and 30%) [1,3,4] whereas others

experiencing the same trauma appear to be resilient. In

addition, those who meet the criteria for PTSD vary widely

in their symptom severity and in the type of symptoms

they experience [1,3-8]. A variety of factors contribute to

the magnitude of PTSD symptoms, including an individu-

al’s genetic makeup, predisposition, social support net-

work and early life experiences [9-12] (Box 1). In other

words, these factors might determine an individual’s re-

silience to trauma. Studying what accounts for this resil-

ience in certain individuals could help target treatments

and the prevention of PTSD in trauma victims predisposed

to develop PTSD. Understanding the neurobiological

mechanisms of PTSD as well as developing more rapid

and cost-effective treatments is of vital importance. The

Glossary

Classical conditioning: a learning paradigm that pairs a neutral/conditioned
stimulus (CS) with an unconditioned stimulus (US) that evokes a reflex or
unconditioned response (UR) until the neutral stimulus evokes the same
conditioned response (CR) in the absence of the US.

Contextual conditioning: a model of fear conditioning based solely on the **%
context and not a discrete cue such as a light or a tone.

Extinction: the conditioning phenomenon in which a previously learned
response to a cue is reduced when the cue is presented in the absence of a
previously paired aversive or appetitive stimulus.

Pavlovian fear conditioning: a version of classical conditioning where the CS
(e.g. tone, light, odor) is paired with an aversive US (e.g. foot shock, air blast)
that evokes a CR (e.g. freezing, acoustic startle response or autonomic arousal).

*k*
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Box 1. Genetic association studies in PTSD

Trends in Neurosciences January 2012, Vol. 35, No. 1

How it works: these studies compare the DNA of two groups of
participants: trauma victims with PTSD and trauma victims without
PTSD. Each person gives a sample of cells from their cheek, saliva or
blood. DNA is extracted from these cells and gene chip analyses are
performed. Rather than reading DNA sequences, these systems use
SNPs that are markers for regional DNA variation. If genetic variations
are more frequent in the affected participants, then the variations are
said to be associated with the disorder.

BDNF = brain-
derived
neutrophic
factor (=
representative
protein related
to neuronal
differentiation,
maturation,

& survival

BDNF
Val66Met SNP
= valine-to-
methionine
substitution at
codon 66 of
the BDNF
gene single
nucleotide
polymorphism

*kk

Some replicated genetic associations found in PTSD

BDNF (Val66Met) SNP
Function: neurotrophic factor
Result of polymorphism:

e Met allele has been shown to have altered trafficking and secretion

in neurons compared to Val allele [51].

e Met/Met carriers showed increased medial temporal lobe activation

(perhaps compensatory) during episodic and encoding retrieval
tasks [52].

e Greater recruitment of amygdala and PFC activity in Met/Met
carriers during memory formation and retrieval of biologically
relevant stimuli [53].

e Met/Met carriers exhibited impaired extinction learning, which was
correlated with altered activation of the amygdala, PFC and the
hippocampus [54].

https://pubmed.ncbi.nim.nih.gov/32844059/

current review addresses recent molecular approaches to
understanding PT'SD using animal models of fear, limita-
tions of these models and speculation about how these
models might lead to better treatment and understanding
of PTSD and other fear-related disorders.

Serotonin transporter (SERT): short versus long allele
Function: serotonin transport/reuptake
Result of polymorphism:

Genetic
variability
e.g.
o FKBP5
N BDNF
SERT

e Different alleles have been associated with altered SERT gene

expression/translation [158-160].

Findings have been reported in individuals for an increased risk of
PTSD with both the long [158,159] and short allele [158,160].
Recent data suggest that the short allele is associated with
decreased risk of PTSD in low-risk environments (e.g. low crime/
unemployment rates) but increased risk of PTSD in high-risk
environments [158]. This suggests that environment modifies the
effect of serotonin transporter-linked polymorphic region (5-
HTTLPR) genotype on PTSD risk (Figure ).

FK506-binding protein 5 (FKBP5)
Function: glucocorticoid chaperone protein
Result of polymorphism:

e PTSD associated with differential FKBP5 mRNA and protein

expression [161].

e No main effect of FKBP5 genotype on PTSD [9].
e FKBP5 SNPs interact with child maltreatment history as a predictor

of the severity of adult PTSD symptoms [9].

e FKBP5 SNPs might contribute to increased sensitivity of the

amygdala/HPA axis response to adult stress.

e The serine protease neuropsin is critical for stress-related plasticity

in the amygdala by regulating EphB2-NMDA-receptor activation of
FKBP5 expression [162].

Environmental
risks

e.g.

Adverse childhood
experience,

High crime rates

Incident
trauma

e.g.

War zone trauma
Violent crime
Car accident

Y

PTSD symptoms

Hyperarousal, Re-experiencing, Avoidance

TRENDS in Neurosciences

Figure I. Genetic and environmental factors influence the risk for developing PTSD in certain individuals as well as the severity of PTSD symptoms.

Pavlovian fear conditioning as a model for
understanding the underlying mechanisms of

pathological fear responses

The neural structures important to PTSD belong to the

limbic system, a region important for emotional processing
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in both humans and animals [13]. The three regions within
the limbic system most clearly altered in PTSD include the
amygdala, the hippocampus and the prefrontal cortex
(PFC). The amygdala regulates learned fear in animal
and human studies of Pavlovian fear conditioning (see
Glossary) and receives projections from the hippocampus
and PFC [14-18]. Subjects with PTSD show reduced acti-

f’erﬁEea vation of the PFC and hippocampus, which might coincide
activation  with reduced top-down control of the amygdala, possibly
?;erFrch:ntal resulting in a hyper-responsive amygdala signal to fearful
contex) & stimuli [14]. This might result in the disordered fear

hippocampusyegyation in PTSD and other fear-related disorders. Other

tog‘?ﬁg‘ﬁ,ﬁd regions involved with PTSD include the parahippocampal
fﬁggﬂg dalBYTUSs, orbitofrontal cortex, the sensorimotor cortex, the
(= hyper.  thalamus [7] and the anterior cingulate cortex (Figure 1)
responsive [19-21].

ZEK gldga Patients with PTSD show markedly different responses
fsti;:flljlli) to fear conditioning paradigms relative to trauma victims

without PTSD [22-31]. They demonstrate behavioral sen-
sitization to stress [22-24] and over-generalization of the

Trends in Neurosciences January 2012, Vol. 35, No. 1

conditioned stimulus (CS)-unconditioned stimulus (US) PTSD =

response [25,26]. Such patients show impaired extinction ggﬂsi\{iif;ﬁ!

of CS-US pairings [27-29] and show impaired fear inhibi- to stress,
tory learning [31]. It is thought that this altered fear °Vé

. . . . . general-
response might result in the intrusive memories and flash- ization of
backs, enhanced avoidance of reminder cues and autonom- CS-US

ic hyperarousal seen in PTSD [31,32]. The neural circuitry ir%spr;?%sde,

of fear conditioning is conserved across most vertebrate extinction
species and its behavioral readout is both quick and robust ggﬁﬁggs
[33,34]. Therefore, fear conditioning is a tractable method impaired
of studying the fear response underlying PTSD. Many of ifﬁﬁirbiti ory
the molecular tools that have been developed to study leaming
behavior in rodents can be applied to study mechanisms
of fear dysregulation and, therefore, to develop new thera-
peutics that might prove valuable for the treatment of
PTSD.

Evidence from animal models and human neuroimaging PTSD =
studies suggest that one of the underlying mechanisms of ?at)k?r:g?'nmtal)
PTSD might be aberrant synaptic plasticity [7,15,35-44]. synaptic

Synaptic plasticity describes the changes that occur at the ?lasﬁgg%ge
synaptic
activity)

Function: Coordination of sensory and motor functions
In PTSD: Symptom provocation results
in increased activation

Function: Sensory relay station
In PTSD: Decreased cerebral
blood flow

Function: Important for memory
encoding and retrieval
In PTSD: Show stronger connectivity
with medial prefrontal cortex;
decreases in volume

Function: Autonomic functions, cognition
In PTSD: Reduced volume, higher resting
metabolic activity

Function:
- Emotional
- Regulation

In PTSD:

- Decreased gray and white
matter density

- Decreased responsiveness to
trauma and emotional stimulia

Orbitofrontal cortex:
Function: Executive function
In PTSD: Decreases in volume

Amygdala
Function:

- Conditioned fear

- Associative learning

Fear response

Function:
- Evolutionary survival

In PTSD:

- Stress sensitivity

- Generalization of fear response
- Impaired extinction

In PTSD:

stimuli

Hippocampus
Function:
- Conditioned fear

- Associative learning

- Increased responsiveness
to traumatic and emotional

In PTSD:
- Increased responsiveness
to traumatic and emotional

TRENDS in Neurosciences

Figure 1. A schematic of the human brain illustrating how the limbic system is involved in posttraumatic stress disorder (PTSD). The prefrontal cortex (PFC) and the
hippocampus both have dense connections to the amygdala, which is important for conditioned fear and associative emotional learning. The PFC is thought to be
responsible for reactivating past emotional associations and is decreased in both responsiveness and density [7,8,14,15]. The hippocampus is thought to play a role in
explicit memories of traumatic events and in mediating learned responses to contextual cues; in PTSD, the hippocampus is decreased in volume [150] and responsiveness
to traumatic stimuli [20,150]. The top down control of the amygdala by the hippocampus and PFC might result in the increased activation of the amygdala, as is observed in

subjects with PTSD [7,8,14,15]. The end result of these neuroanatomical alterations is increased stress sensitivity, generalized fear responses and impaired extinction. Other

*k%k

regions including the anterior cingulate cortex, the orbitofrontal cortex, the parahippocampal gyrus, the thalamus and the sensorimotor cortex also play a secondary role in

the regulation of fear and PTSD [151].
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Disordered
fear regulation

Appropriate
fear regulation

Stress sensitivity Stress resistance

Over-consolidation
of fear

Recovery
from fear

Discrimination
of fear cues

Generalization
of fear cues

Development of PTSD
Resilience / Recovery

Normal extinction
of fear memories

Impaired extinction
of fear memories

Y

TRENDS in Neurosciences

Figure 2. Disordered fear regulation in posttraumatic stress disorder (PTSD).
Individuals with PTSD typically show increased sensitization to stress, over-
generalization of fear to irrelevant stimuli and impaired extinction of fear
memories. Individuals who demonstrate resilience to PTSD, and/or who recover
from traumatic/ stressful experiences, are able to discriminate between fearful and
non-fearful stimuli, as well as displaying normal extinction of fear memories.

synapse with prolonged synaptic activity. Such changes
are physiological, morphological and molecular in nature.
Synaptic plasticity is hypothesized to be the underlying
basis of learning and memory [35-45]. Behaviorally, sub-
jects with PTSD show increased sensitization to stress,
over-generalization of fear associations and failure to ex-
tinguish learned fear (Figure 2) [22-31]. Animal models
that mimic these behavioral abnormalities, such as ani-
mals trained in the fear conditioning or extinction learning

PTSD = paradigms, require synaptic plasticity [35-44]. Therefore,
I:eo?wrditionin impairment of fear or extinction processes in PTSD might

= impairedgoe indicative of impaired synaptic plasticity. Much is

synaptic  known about the molecular mechanisms of synaptic plas-
&'ﬁﬁitr']c'ty ticity, and understanding how PTSD might be a disorder of

emotional synaptic plasticity within emotional circuits will provide
circuits  pew avenues for translational research.

There are two practical clinical benefits to understand-
ing the biological mechanisms of PTSD: prevention and
treatment. A better understanding of the genetics and

#+ underlying molecular mechanisms of PTSD will hopefully
lead to better predictions about which individuals might be
more susceptible to developing PT'SD after trauma through
genetic, biomarker and psychological screening. In addi-
tion, knowledge of the molecular underpinnings of PTSD
will point towards novel molecular targets for drug devel-

Under- opment. By generating drugs that activate these molecular
standing mediators of plasticity, one might be able to enhance
mglfhcgrlﬁgnggctinction of inappropriate fear associations or even pre-
of PTSD vent development of fear associations in at-risk individua-
> drug lst. This area of research shows great promise for potential

devel
(_(_e;/e P ew approaches to treat PTSD symptoms.

enhance

extinction . . . PP

of inappro-Neurotrophic mechanisms of synaptic plasticity in fear
priate fear conditioning

associatio . . . .
or even "Phe brain-derived neurotrophic factor (BDNF)-tyrosine

prevent kinase B (TrkB) pathway provides one example of a li-
developmeph 4 _receptor system that underlies synaptic plasticity

f f
gss%?:gatiorm;ld has also been implicated in both PTSD in humans

and in animal models of fear conditioning, extinction and

Trends in Neurosciences January 2012, Vol. 35, No. 1

inhibitory learning. Peripheral plasma and serum studies

[46-48] as well as genetic studies have directly linked

BDNF to PTSD [49]. In addition, transgenic, molecular .
and behavioral studies in rodents have provided insiglgﬁg;?gon h
into the underlying mechanisms of BDNF signaling riucleotide
PTSD. There is burgeoning evidence for an associati@g%pmzm
between a single nucleotide polymorphism (SNP) in tBBNF gene
BDNF gene (Val66Met) and various psychiatric disordef¥a/66Met)
including depression and schizophrenia [49,50]. This mu- ***
tation is thought to alter BDNF stability and activity-
dependent secretion, hence leading to dysfunctional BDNF
signaling [51]. Although there is limited evidence for a role

of the Val66Met polymorphism in PTSD, the Val66Met poymopnisn=onsor

two variants of a

polymorphism might also result in altered memory func- :’m"p/'/wwf’w”::
tion [50-55]. BDNF (Met/Met) carriers showed increased ggsicsgossan

medial temporal lobe activation during episodic and encod-
ing retrieval tasks [52]. Another study described greater
recruitment of amygdala and PFC activity in Met/Met
carriers during memory formation and retrieval of biologi-
cally relevant stimuli [53]. Finally, BDNF (Met/Met) car-

riers exhibited impaired extinction learning, which was ﬁgwﬁp;?rrggrs
correlated with altered activation of the amygdala, PFC E‘;Lﬂ?ﬁ'ﬂ:
and the hippocampus [54-56]. Together these data suggest even as the
that this polymorphism might play a role in activation of threat s ot
the limbic system during memory formation and emotion- o exiinciion

ally-relevant learning. oy et gagered
Humanized BDNF (Val66Met) knock-in mice with the

Met/Met phenotype show increased anxiety-related beha-

viors compared to Val carrier mice when placed in stressful

settings [57,58]. BDNF (Met/Met) mice and humans car- ***

rying the Met allele show impaired extinction learning

after fear conditioning [56,59]. Together these studies o

suggest that the transgenic mice share a similar phenotype aomooac ™

to individuals at risk for PTSD in that they appear to be [l hat

more sensitive to stress/anxiety and have impaired extinc- 2/eredby the

tion of conditioned fear. In addition, BDNF (Met/Met) mice §L°NAcale

showed impaired NMDA receptor-dependent synaptic (https:iwww.

plasticity in the hippocampus [60]. It has not been reported ggmgggggglc

whether these mice show impaired plasticity in the amyg- mouse-models/)

dala and PFC, although the extant data support the idea

that PTSD is a disorder of aberrant plasticity mechanisms aberant =

*kk

bnormal
and that these mechanisms are regulated by BDNF sig- alar;:::a:
naling o ?eturnin)g; to

normal (ability

BDNF-TrkB signaling has been shown to be necessary to change)
for various aspects of fear conditioning and extinction in all
three of the regions implicated in PTSD: the amygdala, the
hippocampus and the PFC [61-73]. In the amygdala,
BDNF transcription is increased during the consolidation
period 2 hours after fear conditioning [60-63]. Inhibiting
BDNF signaling in the amygdala impairs both the acqui-
sition and consolidation of fear conditioning [67] and the
consolidation of extinction [66]. In addition, an increase in
BDNF was observed after the normal window of consoli-
dation at around 12 hours after fear conditioning and this
peak in BDNF expression was shown to be crucial f&i;ﬁﬁgﬁ’}f?
persistence of the fear memory [68]. Recent evidence sq-‘ﬁésyiﬁ;%?itci"“ease
gests that one effect of BDNF activation of TrkB is to lowgfg folowd
the threshold for synaptic plasticity to occur. In single cgifairnea
slice physiology studies, the threshold for LTP inductionin _
BLA principal neurons is critically dependent on the level basolateral

. . o1 . . nucleus of
of dopamine in the extracellular milieu and the synergistic the amygdala
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activation of postsynaptic D1 and TrkB receptors [74]. This
is consistent with other new data examining thalamo-
amygdala LTP processes, which suggest a postsynaptic
site of action of BDNF in mediating LTP selectively in
the thalamic fear conditioning pathway [75]. Thus, BDNF
signaling in the amygdala appears to play a significant role
in synaptic plasticity events underlying the consolidation
and the persistence of fear memories.

Mice heterozygous for the BDNF deletion (BDNF'+/—)
showed impaired contextual fear conditioning, which could
be partially rescued with expression of BDNF in the hip-
pocampus [69]. Mice in which BDNF was selectively delet-
ed from the hippocampus did not show impaired
acquisition of fear conditioning; however, there was a
marked decrease in extinction of conditioned fear [62].

*k%k

PTSD sufferers

;i;ggg:ri;ggl This result suggests that normal hippocampal plasticity
Luiggggg éSDrT;f"er is required for normal context-dependent extinction of

Zgllfsrgei;)pg:gmhg ntconditionefl fear. Taken togeth('er wit}} the ﬁpdings of
in extintion of smaller hippocampal volumes in subjects with PTSD
[62,69], these convergent data suggest that impaired hip-

pocampal function in PTSD might be causally related to

these subjects’ impairment in extinction of fear memories.

BDNF has also been implicated in differential roles in

distinct subregions of the PFC in the retention and in

the extinction of learned fear. Genetic deletion of BDNF

Trends in Neurosciences January 2012, Vol. 35, No. 1

selectively in the prelimbic area (PL) of the PFC causes
impairment in consolidation of learned fear but not extinc-
tion [70]. By contrast, infusing BDNF into the infralimbic
area (IL) of the PFC resulted in reduced fear expression for
up to 48 hours after fear conditioning even in the absence of
extinction training but did not erase the original fear |
memory [71]. Rats with impaired extinction showed less ;T(ﬁﬁgﬁgn
BDNF expression in the IL PFC compared to control rats, in rats =
and infusing BDNF into the IL prevented extinction fail- I(-:?)?SreBst!\cl;
ure. These data suggest that BDNF might be a crucial in infra-
mediator of neural plasticity in both regions. Owing to the ”m?ic tal
differential connectivity and functioning of IL and PL, Egig‘f(”a
BDNF in these areas also results in opposite effects. BDNF compared
. . . to control
in the PL is necessary for fear memory formation and g
expression, whereas BDNF in the IL is apparently neces-
sary for the inhibition, or extinction, of that fear. Thus,
BDNF signaling in the PFC plays a critical role in the
regulation of fear and emotion and might serve as a target
for enhancing extinction in subjects with PT'SD.

The TrkB receptor is composed of an extracellular do-
main that binds BDNF and an intracellular domain that
activates signaling pathways through phosphorylation of
two tyrosine residues, Y515 or Y816, which activate diver-
gent signaling pathways (Figure 3). Phosphorylation of the
Y515 residue allows recruitment of Src homology 2 domain

Y816
PLC/IP3/CAMKIV pathway

Point mutation
Produces deficits in
acquisition of fear

Y515
Ras/MEK/ERK pathway
PI3K/AKT pathway

Point mutation
Produces deficits in
consolidation of fear

—>
Gene transcription

BDNF = necessary
for acquisitign &
consolidation of fear
conditioning

B D N F Fear conditioning:

Role in fear consolidation fear conditioning [63,71]

conditioning
and extinction

contextual fear conditioning [66]

acquisition of fear [68]

Amygdala: Inhibiting BDNF signaling in the
amygdala impairs both the acquisition and

Hippocampus: BDNF+/- mice showed impaired

Prefrontal cortex: Prelimbic BDNF required for

Extinction:
Amygdala: Required for consolidation but
not encoding of extinction [64]

Hippocampus: Deletion of BDNF impairs extinction

BDNF secreting neurons project to the infralimbic cortex [67]
Prefrontal cortex: Infralimbic BDNF required for

extinction of fear [69]

BDNF = necessary
for extinction pf fear

TRENDS in Neurosciences

Figure 3. The brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) induced signaling pathway. BDNF binds to the TrkB receptor, resulting in the
phosphorylation of two tyrosine sites (Y515 and Y816) on the intracellular domain of the TrkB receptor. Phosphorylation of the Y515 residue allows recruitment of Src
homology 2 domain containing/fibroblast growth factor receptor substrate 2 (Shc/FRS-2), which subsequently activates the Ras/mitogen activated protein kinase (MAPK)

and phosphatidylinositol 3-kinase (PI3K) pathways. By contrast, phosphorylation of the Y816 residue allows recruitment of phospholipase C (PLC), which activates the Ca

2+/

calmodulin-dependent protein kinase (CAMK)/cAMP responsive element binding protein (CREB) signaling pathway. Point mutations of the Y515 residue produce deficits in
consolidation but not acquisition of fear conditioning [72]. By contrast, point mutations of the Y816 residue produce deficits in acquisition [72]. Evidence exists for a role of
BDNF signaling in the amygdala [63,64,71], hippocampus [66,67] and PFC [68,69] with respect to both the consolidation and extinction of fear conditioning.
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containing/fibroblast growth factor receptor substrate 2
(Shc/FRS-2) activating the RAS/mitogen activated protein
kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)
pathways. By contrast, phosphorylation of the Y816 resi-
due allows recruitment of phospholipase C (PLC), which
activates the Ca®*/calmodulin-dependent protein kinase
(CAMK)/cAMP responsive element binding protein
(CREB) signaling pathway [76]. Genetic mouse models
carrying single point mutations at each of these two sites

Trends in Neurosciences January 2012, Vol. 35, No. 1

modification) of amygdala-dependent fear processes in
animal models (e.g. [78]). Complementing these human
findings, PAC1 mRNA expression was induced with either
fear conditioning or estrogen replacement in rodent mod-
els [77]. These data suggest that perturbations in the
PACAP-PAC1 pathway are involved in abnormal stress
responses underlying PTSD, and that some of the sex-
specific differences in PTSD risk/resilience [79] might be
in part due to estrogen modulation of this pathway.

(Y515F or Y816F) have been developed [72]. TrkB (Y515F) o e
knock-in heterozygous mice exhibited deficits in consolida- ~ GABAergic inhibitory regulation of neuronal circuits in $/%e0°
tion but not acquisition of fear conditioning, whereas TrkB fear conditioning

(Y816F) mice exhibited deficits in acquisition [72]. How = GABAergic inhibitory control is crucial for the precise regu- S@Bﬁiﬁﬁ;
acquisition and consolidation lead to differential activation ~ lation of consolidation, expression and extinction of fear 2! modfies
of the TrkB receptor at the Y515 site versus the Y816 siteis  conditioning [80-82]. Fear conditioning results in a reduc- gapt i,

currently unclear. Furthermore, it will be of interest to

tion in GABAergic signaling in the basolateral nucleus of the

amygdala (BLA) relative to non-fear conditioned controls 3757~ gamme-

[83] and genetic deletion of the a1l subunit of the GABAA ;(':iir(rj]é:ytihn%ibitory
receptor enhances auditory fear learning [84]. Many of the neurotransmitter
. . . that slows down
early papers used GABA agonists as a method of inactivat- girgvr::gkiinti .
ing specific brain regions to determine their role in behavior. brain); has a role
. . . . . I
GABAergic inactivation of the amygdala, hippocampus, management; car
PFC and regions of the striatum resulted in impairments (:%%ugs broccoli
in various aspects of conditioned fear [85-87]. In addition, cavifiower,
brussels sprouts,

GABAergic inactivation of the infralimbic cortex, BLA or soybeans,

ventral hippocampus also impaired fear extinction Iy tomatoe
(86,88,89]. However, GABAergic signaling is more than a P3s,chestnuts,
methodological tool for inactivating regions of the brain but riee/orown rice)

study the different roles of these phosphorylation sites in
the extinction of learned fear.

Despite significant evidence suggesting a role for the
BDNF-TrkB system in fear-related and other affective
disorders, a lack of ligands for the high affinity TrkB
receptor has limited progress towards BDNF-related treat-
ments for psychiatric and neurological disorders. However,
7,8-dihydroxyflavone (7,8-DHF) has recently been identi-
fied as a relatively specific TrkB agonist that crosses the
blood-brain barrier after oral or i.p. systemic administra-
tion in mice [61]. It was subsequently demonstrated that
amygdala TrkB receptors are activated by systemic 7,8-

sweet potatoes,

DHF (5 mg/kg, i.p.) [73]. In addition, systemic 7,8-DHF

appears to maintain tight regulatory control over microcir-

https://www.
rescued the fear consolidation deficit observed in prelimbic cuits in a region and cell-type specific manner. 'C'}’,?ns/t;%?é’,'e!
BDNF knockout mice [70] and enhanced both the acquisi- Two recent papers have outlined how GABAergic inhib- &/878%-a st
tion of fear and its extinction in wild type mice [78].  itory microcircuits might regulate acquisition and expres- fe:ho""

Furthermore, this agonist appears to rescue an extinction
deficit in mice with a history of immobilization stress,
which might serve as a face-valid animal model of PTSD
[73]. These data suggest that 7,8-DHF and other potential
TrkB activating ligands might not only be valuable as
pharmacological tools for achieving a better understanding
of the role of BDNF-TrkB signaling pathways in learning
and memory, but also as potential therapeutics for revers-
ing learning and extinction deficits associated with psy-
chopathology.

An additional molecule that has been implicated in
synaptic plasticity and BDNF regulation is pituitary ade-
nylate cyclase-activating polypeptide (PACAP). PACAP is
known to broadly regulate the cellular stress response,
however, it was only recently demonstrated to also have a
role in human psychological stress responses, such as
PTSD. Specifically, a sex-specific (female) association of
PACAP blood levels with fear physiology, PTSD diagnosis
and symptoms was observed in a population of heavily
traumatized subjects [77]. In addition, a single SNP in a
putative estrogen response element within the PACAP
receptor (PAC1) was associated with PTSD symptoms in
females only. This SNP also associated with enhanced
levels of fear discrimination and with levels of PAC1
mRNA expression in human cortex. Methylation of the
PAC1 gene in peripheral blood was also found to be sig-
nificantly associated with PTSD [77]. Note that an increas-
ing body of literature is suggesting an important role
for epigenetic regulation (DNA methylation and histone

sion of fear memories in the central nucleus of the
amygdala (CEA). It was originally thought that associative
learning primarily occurs in the BLA, whereas the CEA
mainly controlled the expression of fear [90]. Such regula-
tion of fear expression occurs via projections from central
amygdala output neurons, which are mainly located in the
medial subdivision (CEm), to the brainstem and hypothal-
amus [90]. However, a role for the CEA in fear acquisition
has been demonstrated [90]. Activation of the CEm in mice
by pharmacological and physiological techniques was
found to result in strong and reversible freezing responses
[90]. Inactivating the lateral division of the CEA (CEl), but
not the CEm, was found to induce unconditioned freezing
as well as impairing fear conditioning. From these results,
it was concluded that neuronal activity in the CEm is
necessary and sufficient for driving the freezing response
but that the CEl is required for the acquisition of fear and
produces tonic inhibitory control of the CEm, which is
reduced during presentation of the conditioned stimulus
(CS+) [90].

Moreover, the above study also identified two distinct
subpopulations of inhibitory GABAergic neurons in the
CEIl [90]. These neuronal subpopulations were termed
CEl ‘on’ and ‘off neurons based on their response to fear
conditioning. CEl ‘on’ neurons acquired an excitatory re-
sponse to the CS+ during and after fear acquisition, where-
as CEI ‘off neurons showed decreased responses to the CS+
during and after fear acquisition. CS evoked excitation of
CEl ‘on’ neurons began before the CEl ‘off’ neurons, and
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both ‘on’ and ‘off’ neurons sent inhibitory projections to the
CEm [90]. CS evoked inhibition of ‘off neurons started
immediately prior to excitation of CEm neurons, indicating
that increases in CEm firing might be due to a reduction of
inhibition from CEI ‘off neurons. It is also probable based
on the short onset latency of the CS-evoked excitation of
CEl ‘on’ neurons that they receive direct input from the
sensory thalamus. The CEm also receives thalamic input
[90], which might be inhibited by feed forward inhibition
through the CE ‘on’ pathway. Based on this physiological
data, it is hypothesized that fear conditioning leads to a
shift in the balance of activity between distinct classes of
CEl neurons, which ultimately regulates the activity of
CEm firing [90].

A second recent study has added to the understanding of
CEA inhibitory microcircuits by molecularly defining two
subtypes of inhibitory neurons in the CEl by the presence
or absence of the d isoform of protein kinase C (PKC- %) [91].
Using molecular and genetic approaches, this study was
able to map the functional connectivity of PKC- 8+ and
PKC-3- neurons. Specifically, optogenetic targeting was
employed to examine the effect of reversibly silencing PKC-
3+ neurons on the activity of CEl ‘on’, CEl ‘off and CEm
neurons. PKC- 8+ neurons were found to be predominantly
late firing neurons, which reciprocally inhibit PKC-3- neu-
rons. Inactivation of PKC-3+ neurons evoked action poten-
tials in the CEm output neurons. In addition, tonic activity
of CEl ‘off units was strongly suppressed by the inactiva-
tion of PKC-3+ neurons. Taken together, these findings
suggest that the PKC-3+ neurons are likely to be the CEl
‘off neurons [91] (Figure 4).

Another recent study observed that temporally precise
optogenetic stimulation of BLA terminals in the CEA
exerted an acute, reversible anxiolytic effect [92]. These
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TRENDS in Neurosciences

Figure 4. Schematic diagram illustrating the key amygdala nuclei involved in fear
conditioning. Microcircuits within the amygdala demonstrate multiple levels of
regulation with response to fear consolidation, extinction and the expression of
fear. Initially, it was thought that the basolateral nucleus of the amygdala (BLA)
complex was solely responsible for fear acquisition and was the main recipient of
thalamic and cortical inputs. The central amygdala was thought to be crucial only
for the expression of conditioned fear responses via activation of downstream
neural structures [35,151]. Now, significant evidence supports the idea that the
lateral division of the central amygdala (CEl) is also critical for acquisition of fear
and also receives cortical and thalamic inputs. In addition, intercalated neurons
might regulate firing of central amygdala output neurons and the expression of
extinction. The intercalated neurons receive projections from the infralimbic cortex
(a region critical for extinction) and project GABAergic inhibitory neurons onto the
medial division of the central amygdala (CEm).
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results implicate specific BLA-CEA projections as critical
circuit elements for acute anxiety control in the mammali-
an brain.

Together, these recent papers provide new insight into
the role of GABAergic inhibitory microcircuits in the ac-
quisition and expression of fear conditioning. One out-
standing question from this research is: if both CEl ‘off’
and CEl ‘on’ units send inhibitory projections to the CEm,
why is CEm activity increased rather than decreased after
fear conditioning? This might be due simply to a balance
between on and off neuron firing, i.e. the effect of decreased
CEl‘off firing is greater than the effect of increased CEl ‘on’
firing. Another reason could be that the CEl ‘on’ neurons
project to a different subpopulation of CEm neurons. Such
recent findings add another level of control to the acquisi-
tion of fear. Not only is the BLA complex crucial for fear
conditioning, but the CEI also appears to be crucial. The
CEl is downstream of the BLA but might also work in
parallel to form fear memories because it also receives
connections from auditory thalamic nuclei and cortical
areas. Because the CEA is downstream of these structures,
the CEA might be able to override stimulus discrimination
established in upstream structures such as sensory and
association cortex and thalamic regions.

Furthermore, feed forward inhibition from intercalated
(ITC) neurons might implicate the CEl as the primary
target for fear extinction. ITC cells are a very small sub-
population of neurons located just medial to the BLA
complex, and they appear to be necessary for extinction.
Selectively lesioning ITC neurons results in a marked
impairment in extinction learning [93]. ITC neurons re-
ceive glutamateric input from the PFC [94,95] and directly
project to both the CEl and CEm [91]. Activating the
infralimbic region of the PFC resulted in activation of
the immediate early gene, c-fos, in ITC neurons [95],
and extinction produced an excitation in ITC neurons,
which resulted in inhibition of the CEA output neurons
[95]. The BLA also synapses onto ITC neurons [96], pro-
viding another level of regulation of fear learning and
extinction (Figure 4). Clearly, fear conditioning and extinc-
tion are under tight regulatory control by GABAergic
signaling, and as will be discussed in the next section,
glutamatergic signaling also plays a key regulatory role.

Glutamatergic signaling in fear conditioning

Glutamate is the main excitatory neurotransmitter in the
brain, therefore it is not surprising that glutamatergic
signaling is essential for the consolidation and extinction
of fear. Glutamatergic cells in the BLA are activated after
fear conditioning in rodents [97]. The BLA receives gluta-
matergic input from the sensory thalamic and cortical
structures as well as the hippocampus and PFC [35]. In
addition, the BLA sends glutamatergic signals to the CEA,
which regulates the inhibitory microcircuits reviewed in
the previous section. Glutamate acts on a variety of iono-
tropic NMDA, AMPA) and metabotropic receptors (mGluR
1-8), which have been widely demonstrated to play a role in
fear conditioning. Ionotropic glutamate receptors are the
key mediators of synaptic plasticity required for long-term
fear memories, whereas mGluRs modulate synaptic plas-
ticity through G-protein coupled signal transduction.
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Fear conditioning appears to result in an activation of
NMDA receptors [98]. There are multiple ways by which
NMDA activation contributes to synaptic plasticity in the
amygdala, some of which are described below. Fear condi-
tioning also results in NMDA receptor-dependent increases
in degradation-specific polyubiquitination in the amygdala,
targeting proteins involved in translational control and
synaptic structure [99]. This recent study also showed that
blocking the degradation of these proteins significantly
impairs long-term memory. In addition to these mecha-
nisms, within the synapse downstream signaling mecha-
nisms result in a subsequent insertion of additional AMPA
receptors at synaptic sites [98-103]. This increase in surface
AMPA receptors results in LTP and an increased respon-
siveness of the synapse to future CS+ presentations. Antag-
onizing NMDA receptors in either the hippocampus or BLA
impairs consolidation of fear conditioning [104-106]. Block-
ing AMPA receptor insertion in the synaptic membrane in
the lateral amygdala blocks fear memory formation
[101,102]. Extinction of fear conditioning also appears to
be regulated by NMDA and AMPA receptor signaling. An-
tagonizing NMDA receptors can impair extinction in
rodents [106,107]. In addition, there appears to be a reduc-
tion in surface AMPA receptors after extinction, relative to
fear-conditioned animals that were not extinguished [108].

Changes in NMDA/AMPA ratios appear to happen rap-
idly during consolidation of memory, but the question
remains: how is glutamatergic signaling translated into
a long-term memory and how is that memory biologically
maintained? Protein kinase M zeta (PKM({) is an atypical
isoform of PKC that can stay chronically active despite
molecular turnover. Overexpression of PKM{ enhances
long-term memory [109] and inhibiting PKM({ can disrupt
memory, even after that memory has been formed [109-
114]. In addition, PKM{ inactivation-induced impairment
of fear memory appears to correlate with a decrease in
expression of the GluR2 subunit of the AMPA receptor
[110]. Furthermore, blocking GluR2-dependent removal
of postsynaptic AMPA receptors abolished behavioral

Trends in Neurosciences January 2012, Vol. 35, No. 1

impairment of PKM{ inhibition [110], suggesting that
PKM({ might be a mechanistic switch that maintains mem-
ory over time through the regulation of AMPA receptor
trafficking. However, a pharmacological inhibitor of PKM{
only temporarily disrupts expression of fear conditioning
when administered to rats immediately prior to testing
and does not completely abolish the fear memory [111].
Thus, at least based on these findings, it appears that
PKM( is an unlikely drug target for PTSD.

An alternative promising avenue for the modulation of
glutamatergic signaling has been the development of D-
cycloserine (DCS), an NMDA partial agonist. DCS has
been shown to facilitate extinction learning in animals
and humans [115-127]. More recently, DCS has been
suggested to reverse the reduction in AMPA receptors that
is normally observed at synaptic sites in the lateral amyg-
dala after fear learning [97]. Clinically, DCS has been
shown to be a valuable augmentation to behavioral thera-
pies for a variety of anxiety-related disorders, including
obsessive-compulsive disorder [121-125,127,128], however
definitive trials specifically for PT'SD treatment using DCS
have yet to be completed. DCS is an example of a drug that
enhances the extinction of fear in animals and humans, as
well as enhancing behavioral therapy in individuals with
anxiety disorders involving fear dysregulation.

mGluRs modulate synaptic plasticity in the brain and
are critical for the consolidation of fear conditioning and
extinction. Although there have been mixed reports about
the effect of mGluR agonists on fear conditioning, in gen-
eral, mGluR antagonists and genetic deletion of mGluRs in
the limbic regions of the brain appear to impair both
consolidation and extinction of fear conditioning [129-
134]. Activation of mGluR1-containing receptors in the
BLA is known to enhance fear learning [135].

Many other receptor-ligand systems play a modulatory
role in Pavlovian fear conditioning and probably contribute
to PTSD, mostly by modulating GABAergic and glutama-
tergic signaling (Table 1). Two retrograde signaling sys-
tems (involving nitric oxide and endocannibinoids as the

Table 1. Other ligand-receptor systems involved in the regulation of Pavlovian fear conditioning

Norepinephrine (NE) Consolidation Enhanced with aq-adrenergic receptor antagonists [142]
Impaired by siRNA for B;-adrenergic receptors [143]

Extinction Impaired by antagonizing NE receptors in the infralimbic cortex [144,145]
NOS-cGMP Consolidation Enhanced by PKG activation in the LA [137]
Impaired contextual conditioning in nNOS KO mice [138]
Impaired in cGMP mutant mice [139]
Impaired by NOS and PKG inhibition in the LA [140]
Endocannabinoid Consolidation CB1 mRNA increases 48 h after fear conditioning [136]
Enhanced by inverse agonist of CB1 in the CEA or BLA [136]
Impaired by CB1 receptor agonist or AEA transport inhibition into the vmPFC [136]

Extinction Impaired by pharmacological blockade or genetic deletion of CB1 receptors [141,152]

Dopamine (DA) Consolidation Enhanced by D2 receptor agonists in the VTA [146,147]
D2 receptor antagonists in the BLA impair fear potentiated startle [146]
Extinction Impaired by D1 receptor loss (genetic KO or siRNA in hippocampus) [148]
Impaired by systemic or intra-IL PFC infusion of D2 antagonist [149]

Acetylcholine (Ach) Consolidation Enhanced by nicotinic Ach (nACh) agonists in the hippocampus [153-155]
Impaired by a; nAch receptor antagonists [156]
Extinction Impaired by nAch agonists [157]

2Abbreviations: AEA, anandamide; CB1, cannabinoid receptor type 1; IL, infralimbic; KO, knockout; NOS, nitric oxide synthase; PKG, cGMP-dependent protein kinase;

siRNA, small interfering RNA.
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Box 2. Outstanding questions

e Why are some individuals at risk for developing PTSD, but despite

similar trauma, others appear to be resistant?

Furthermore, as with many common diseases, PTSD will probably

represent a final common pathway of a ‘broken brain’ at the

intersection of trauma and biology. How many different ‘sub-
types’ of PTSD might there be?

e Will our current syndromal nomenclature be predictive of these

subtypes, or will future biomarkers provide new ways of

dissecting this syndrome?

Is the resilience that we define as lack of PTSD, despite severe

trauma, simply the absence of PTSD symptoms (along with

comorbid depression and substance abuse) or is resilience an
orthogonal construct that is uniquely protective?

e Up to 30-35% of risk for PTSD appears to be heritable [163].

Similar to a number of other disorders, will this be made up of

many common gene variants, which each contribute only a small

percentage of risk, or will there be a larger number of rare variants
that each contribute higher levels of risk?

With sufficient trauma loading, almost anyone is susceptible to

PTSD. Genes appear to differentially modulate the level of

susceptibility at a given trauma level or trauma ‘dose’. How do

the effects of childhood and adult trauma interact through neural
circuitry with genes that contribute risk, and which might act in an
additive fashion on this same circuitry?

e The neural circuitry modulating fear, including the amygdala, PFC
and hippocampal regions are conserved across mammals. This
makes research on PTSD and other anxiety-related disorders
more readily accessible to translation compared to many other
mental disorders. Utilizing human dynamic and structural neu-
roimaging techniques combined with rodent and other laboratory
model species, we can ask how do these different regions that
organize and modulate the emotion of fear work in concert?

retrograde messengers) have been shown to be important
for presynaptically-regulated plasticity in consolidation
and extinction, respectively [136-141]. Noradrenergic sig-
naling from the locus coeruleus [142-145], and dopaminer-
gic projections to the amygdala from the ventral tegmental
area (VTA) and nucleus accumbens [146-149] also play
important roles in modulating synaptic plasticity and fear
conditioning. These transmitter systems could provide
additional potential molecular targets for the pharmaco-
logical augmentation of behavioral therapy for PTSD.

Concluding remarks

The molecular pathways discussed in this review are
crucial for fear conditioning and extinction. Recent re-
search has advanced our understanding of many of the
downstream molecular mechanisms of these forms of
learning. By understanding the genetics of PTSD we might
eventually be better able to predict which individuals
might be more susceptible to developing PTSD after trau-
ma. In addition, knowing the molecular underpinnings of
PTSD will provide important new insights into molecular
targets for drug development. By generating drugs that
modulate signaling pathways involved in fear conditioning
and synaptic plasticity in the amygdala, we might be able
to enhance extinction of inappropriate fear associations or
even prevent the development of fear associations in indi-
viduals more susceptible to PTSD. Research in this area
shows great promise for potential new approaches to better
understand the physiology of circuits mediating fear
responses, as well as to potentially further the prevention
and treatment of PTSD (Box 2). Given the rising numbers
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of traumatized civilians and veterans, in addition to our
increasing understanding of the prevalence, comorbidity
and sequelae of PTSD, developing better preventions and
treatments are vital.
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